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2.1 Introduction

In the last decades, the devastating impact of hurricanes revealed the
vulnerability of large areas of the US East and Gulf coasts to this natural haz-

ard. The high toll paid in terms of human lives and the structural damage due

to different storm occurrences raised the awareness about hurricanes. The

importance of developing mitigation and adaptation strategies to reduce

the loss of lives and properties due to hurricane occurrences was formally

recognised at the Federal level with the National Windstorm Impact

Reduction Act Reauthorisation of 2015 (PL 114-52). The resulting

National Windstorm Impact Reduction Program (NWIRP), a joint Pro-

gram of several Federal agencies led by the National Institute of Standards

and Technology (NIST), has as its main objectives the improvement of

the understanding of windstorms and the development of cost-effective

mitigation strategies to reduce their impact.

Additionally, the impact of hurricanes may be exacerbated by climate

change and the population growth of coastal communities (Murphy

et al., 2018). Understanding how climate change affects the behaviour of

extreme storms, and in particular of hurricanes, is a challenging task.

Large-scale average climate is typically simulated using Atmospheric General

Circulation Models (AGCMs). The main issues when looking at climate

change using AGCMs are: (1) the identification of events is challenging

when events have limited temporal and spatial extension as in the case of

hurricanes, and (2) the AGCMs typically have difficulties in capturing the

underlying local physics. Because of these issues, identifying trends (e.g.,

possibly due to climate change) in hurricanes is more complex than

identifying trends in large environment characteristics such as changes in
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temperature. The Intergovernmental Panel on Climate Change Fourth

Assessment Report (IPCC AR4) (IPCC, 2007) was able to show that

high-resolution AGCMs can reproduce approximately the frequency and

distribution of hurricanes. More recently, the Intergovernmental Panel

on Climate Change Fifth Assessment Report (IPCC AR5) (IPCC, 2013)

showed that high-resolution AGCMs (LaRow et al., 2008; Zhao et al.,

2009; Strachan et al., 2013) can simulate the year-to-year count variability

of hurricanes for given observed sea-surface temperatures (SSTs). However,

in both cases, such models underestimated the storm intensity. New models

with improved parameterisations and higher resolution, such as the one

presented by Mizuta et al. (2012), seem to be capable of providing an accu-

rate distribution of the annual storm occurrences as well as simulating events

with intensities comparable to those observed.

Although a general consensus has not been reached, the majority of the

numerical analyses (e.g., Camargo, 2013; IPCC, 2013; Knutson et al., 2015)

suggests an increase in the global mean intensity of the hurricanes, the num-

ber of the most intense occurrences, and the precipitation rate. Conversely,

the global frequency of hurricanes is expected to slightly decrease or remain

unaltered. A probable trend detected in the results of the numerical analyses

is the poleward migration of the locations where the hurricanes land (Kossin

et al., 2016). Another interaction between hurricanes and climate change is

the potential effect of sea-level rise that sets a higher starting level for storm

surge and may increase the extent of the vulnerable areas.

Foreseeing an increase in the already consistent damage due to hurricanes

clearly motivates the need for long-term mitigation and adaptation strate-

gies. For natural hazards, the terms ‘mitigation’ and ‘adaptation’ may assume

different meanings than those in the literature on climate change. Conse-

quently, there is the need to clarify how these terms are used and what is

intended for mitigation and adaptation strategies when talking about the nat-

ural hazards affected by climate change. Independently from the choice of

the adopted terminology, the choice of the mitigation and adaptation strat-

egies should be based on risk assessment analyses. Such analyses require the

use of a specific risk analysis framework that, starting from the modelling of

the hazard, allows the propagation of uncertainties up to the loss estimation

(Contento et al., 2017).

A framework for the risk analysis for hurricanes needs to consider three

fundamental aspects of hurricanes (wind, rainfall, and storm surge), should

be able to account for the effects of climate change, and should adopt wind,

rainfall, and storm-surge models that are computationally efficient. Several

wind and rainfall models in the literature can account for the effects of
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climate change and are computationally efficient (Vickery et al., 2000b;

Emanuel et al., 2006; Mudd et al., 2017). However, currently models

for storm surge that can account for the effects of climate change are gen-

erally computationally inefficient (Jelesnianski et al., 1992; Westerink

et al., 1994). A few models that are computationally efficient (e.g., Irish

et al., 2008; Jia and Taflanidis, 2013) are empirical, and their functional

forms lack physical meaning and are not based on the understanding of

the underlying physical phenomena. Moreover, because of the specific

formulation used to construct such models, it is generally not possible to

incorporate both results from simulations and historical observations in

the model calibration. Consequently, there is the need to define efficient

models that can account for the effects of climate change while capturing

the physics of the phenomena and can incorporate data from both simu-

lations and historical observations.

After clarifying the meaning of mitigation and adaptation strategies in the

present context, the chapter summarises a general framework for hurricane

risk analysis that can be used to compare mitigation and adaptation strategies.

The chapter describes each step of the framework and the specifications of

the models that are needed. The chapter also presents a novel probabilistic

model proposed by Contento et al. (2018) to model the storm-surge height.

Such amodel accounts for the underlying physics of the phenomena, is com-

putationally efficient, and overcomes the limitation of the available empirical

models on the use of different data. Several examples of storm-surge height

predictions show the ability and accuracy of the model. Lastly, the chapter

suggests possible uses of the presented model for the evaluation of different

mitigation and adaptation strategies.

Section 2.2 proposes a consistent use of the termsmitigation and adaptation

when talking about natural hazards affected by climate change. Section 2.3

presents the general framework for hurricane risk analysis. Section 2.4 reviews

the existing formulations for storm surge and presents the probabilistic

model proposed by Contento et al. (2018). Finally, Section 2.5 presents

how the information provided by the hurricane risk analysis can be used.
2.2 Mitigation Versus Adaptation

The terms ‘mitigation’ and ‘adaptation’ are widely used in the litera-
ture related to natural hazards and climate change. However, the meaning of

mitigation and adaptation is inconsistent between the literature related to
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natural hazard and the literature on climate change. Looking at the dictio-

nary definition, mitigation is “the action of reducing the severity, serious-

ness, or painfulness of something” (Stevenson, 2010). When referred to

natural hazard and climate change, the word mitigation assumes different

meanings. For natural hazards, mitigation refers to the reduction of the

impacts (or consequences) of physical hazards through the reduction of

exposure or vulnerability. Since natural hazards traditionally could not be

influenced by human interventions, the focus has been only on reducing

of the effects of the physical phenomenon and not on changing the intensity

or the likelihood of occurrence of the phenomenon itself. Since climate

change is at least in part due to human activities, mitigation typically focuses

on the source of climate change and refers to the reduction of greenhouse

emissions and the enhancement of the sinks of such gasses (IPCC, 2013).

The dictionary definition of adaptation refers to “adjust[ing] to new

conditions” (Stevenson, 2010). The term adaptation is typically not used

in the context of natural hazards. In the context of climate change, adapta-

tion typically refers to the efforts towards ameliorating the consequences of

climate change by adjusting to new climate conditions and their effects

(IPCC, 2013), see also Chapter 1.

For both natural hazards and climate change, mitigation and adaptation

strategies can be defined at two different levels: (i) the level of the built or

modified natural environment, and (ii) the community level. When

looking at hurricanes as an example of natural hazards, mitigation strategies

for the built or modified natural environment might consist in reducing the

vulnerability of structures and infrastructure to highwind, torrential rain, and

storm surge. At the community level, mitigation might include education

actions meant to increase awareness and preparedness, and the adoption of

building codes and regulations for land use. As an extreme measure, mitiga-

tion strategiesmay culminate in relocation (Olshansky, 2018).When looking

at climate change, mitigation strategies are only defined at the community

level. Examples are activities that increase carbon stocks, reduction of direct

agricultural emissions, and prevention of deforestation and degradation of

high-carbon ecosystems. The adaptation strategies for climate change

are the set of actions meant to reduce the consequences of climate change

and, as such, they correspond to the mitigation strategies for natural hazards.

As a result, the same activity (like erecting a levee) is called a mitigation

strategy when considering hurricanes as natural hazards, while it is called an

adaptation strategy in the context of climate change. Consequently, we need

to clarify how these terms are used when talking about the natural hazards
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affected by climate change.We propose to use the termmitigation to refer to

the activities targeted at influencing climate change insofar it affects the nat-

ural hazards.We also propose to use the term adaptation to refer to the activ-

ities targeted at reducing the impact of natural hazards (influenced or not by

climate change). In particular, we propose the use of the terms ‘environmen-

tal adaptation’ and ‘human adaptation’ to differentiate between adaptation

measures that modify the environment (built or natural) and those that

involve changes in human activities (Cooper and Pile, 2013).

Given the inevitability of climate change, all coastal communities will be

forced to adopt adaptation strategies. While farsighted legislators may antic-

ipate adaptation strategies, adaptation and will most likely follow hurricane-

induced disaster occurrences in the form of long-term postdisaster recovery

(Olshansky, 2018). Be it before or after a disaster, the choice of adaptation

strategies should be based on the results of risk analyses. Such risk analyses

necessitate the use of a comprehensive framework, which combines the

different aspects of the hazard (e.g., wind, rainfall, and storm surge in the

case hurricanes), accounts for climate change, and adopts wind, rainfall,

and storm-surge models that are computationally efficient.
2.3 Framework for Risk Analysis

This section presents a general framework for hurricane risk analysis
that is based on the literature and current practice. The presented framework

involves four steps. Step 1 models the hurricane activity and simulates syn-

thetic storms needed to derive the landfall statistics. Step 2 models the three

aspects of the hazard and provides possible hazard scenarios. Step 3 models

damage, predicts losses, and provides the corresponding distributions and

probabilities of exceedance. Step 4 uses the information coming from the

previous steps for the comparison and development of mitigation and adap-

tation strategies. The framework accounts for the underlying uncertainties

from the hazard up to the loss estimation and the development of mitigation

and adaptation strategies (Gardoni, 2017; Murphy et al., 2018). To allow for

both short- and long-term analyses, each step directly or indirectly can

account for the effects of climate change. Additionally, the framework

adopts models that are mostly physics based (which is important to improve

the applicability of the models to cases other than those used in the model

calibration) and computationally efficient (which is important given the

necessity of large numbers of simulations).
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The remaining of this section briefly describes each step. Section 2.4

reviews the existing formulations for storm surge and presents the probabi-

listic model proposed by Contento et al. (2018) that can be used in Step 2.

Section 2.5 presents the details of Step 4 describing how the information

coming from the first three steps can be used in the development of mitiga-

tion and adaptation strategies.
2.3.1 Hurricane Activity Models (Step 1)
Developing a hurricane model and simulating hurricane occurrences is the

first step of a hurricane risk analysis (Lin et al., 2012, 2014). Hurricane

models are needed to simulate synthetic storms to be used in a Monte Carlo

simulation for deriving the landfall statistics (i.e., the hurricane characteristics

at landing). Since hurricane models are function of variables depending on

climate change, such as SSTs, the effects of possible mitigation strategies will

directly affect the landfall statistics.

There are several models available in the literature to describe the gen-

esis, track, and intensity of hurricanes (e.g., Russell, 1971; Vickery et al.,

2000b; Emanuel et al., 2006; Lee and Rosowsky, 2007). These models

can be empirical (Neumann, 1991, Vickery and Twisdale, 1995), mixed

empirical and physics based (Vickery et al., 2000b, Powell et al., 2005,

Lee and Rosowsky, 2007), or physics based (Emanuel et al., 2006). In this

chapter, we distinguish between empirical and physics-based models. We

call empirical models those constructed by fitting an arbitrary model form

to simulated or field data. In contrast, physics-based models are those con-

structed based on the understanding of the underlying physics of the phe-

nomena. We also distinguish between deterministic and probabilistic

models. Deterministic models do not account for the underlying uncer-

tainties, while probabilistic models do. Empirical model could be either

deterministic (e.g., when the parameters in the model calibrated from the

data are fixed at their mean values), or probabilistic. Similarly, physics-based

models can be either deterministic (e.g., when the models are constructed

purely based on first principles) or probabilistic (e.g., when data are used

in addition to the first principles to develop the model and the uncertainties

are captured in the final model form). Each of the three kinds of model avail-

able in the literature for hurricane activities has strengths and limitations;

extensive reviews on hurricane models can be found in Vickery et al.

(2009a) and Lin et al. (2014).
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Among the available models, the one presented by Vickery et al.

(2000b), and improved by Vickery et al. (2009b), is well-suited for analyses

that require a high number of simulations. Although this model proposes an

empirical tracking model, it is still capable of retaining information about the

physics of the problem through a proper choice of the regressors. This model

was used byMudd et al. (2014) for analyses that include the effects of climate

change using projections of SSTs.
2.3.2 Hazard Scenario Models (Step 2)
After the simulation of the hurricane characteristics, hazard models are

needed to simulate the resulting wind, rainfall, and storm surge. For the

wind aspect, different wind profiles, either parametric (Holland, 1980;

Holland et al., 2010; Chavas et al., 2015) or nonparametric (Thompson

and Cardone, 1996; Kepert, 2010) are available in the literature. Generally,

the surface wind field is obtained as the combination of an axisymmetric

surface wind field and a background wind field.

The axisymmetric surface wind field is derived from a gradient wind field

model (e.g., Batts et al., 1980; Holland, 1980; Jelesnianski et al., 1992;

Emanuel, 2004; Emanuel andRotunno, 2011). Such derivation can be done

either by accounting for the surface friction with empirical correction terms,

such as an empirical surface wind reduction factor (Schwerdt et al., 1979;

Batts et al., 1980; Georgiou, 1985; Vickery et al., 2000a; Powell et al.,

2003) and an inflow angle (Bretschneider, 1972), or using boundary layer

models (e.g., Thompson and Cardone, 1996; Vickery et al., 2009b;

Kepert, 2010). Boundary layer models provide the mean wind speed profile

in the hurricane boundary layer. Such models tend to be more accurate and

computationally demanding than those that use empirical correction terms.

They are usually nonparametric with only a few exceptions. One example of

a parametric model was developed by Vickery et al. (2009b) that empirically

modelled the variation of the mean wind speed with height.

The background wind field is typically modelled as a function of the hur-

ricane’s translational velocity having the same direction and a proportional

intensity. Some formulations use the full value of the hurricane’s transla-

tional velocity (e.g., Powell et al., 2005; Mattocks and Forbes, 2008;

Vickery et al., 2009b), while others use reducing factors that vary in each

formulation (e.g., Jelesnianski et al., 1992; Phadke et al., 2003; Emanuel

et al., 2006; Lin et al., 2012).
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The rainfall models available in the literature are mostly empirical models

(Lonfat et al., 2007; Tuleya et al., 2007; Mudd et al., 2017) based on the

rainfall climatology and persistence model (R-CLIPER). These models

are usually developed using recorded rainfall data associated with hurricane

events. Langousis and Veneziano (2009) developed a model of tropical

cyclone rainfall based on the vertical outflow of water vapour from the trop-

ical cyclone boundary layer. Only a few studies in the literature proposed

coupled studies for wind and rainfall (e.g., Mudd et al., 2017).

For the storm surge, the common practice is the use of models such as the

sea, lake, and overland surges from hurricanes (SLOSH) model (Jelesnianski

et al., 1992) or the advanced circulation (ADCIRC)model (Westerink et al.,

1994). Usually these models have either low accuracy or high input require-

ments, are complex and time consuming to develop for a specific site, and

are computationally expensive. Those that have low accuracy (but are easier

to develop and more computationally efficient) are most suitable to forecast

the storm surge promptly in the case of the occurrence of a real hurricane.

Those that have higher accuracy are preferred for detailed probabilistic ana-

lyses. However, their computational inefficiency makes them unsuitable for

performing the high number of simulations typically required by probabi-

listic analyses. Especially for the comparisons between possible climate

change scenarios where multiple analyses are needed, simplified models

fitted to available data are a viable alternative. However, such models avail-

able in the literature and sometime also referred to as ‘metamodels’ or ‘sur-

rogate models’ (Jia and Taflanidis, 2013; Kim et al., 2015; Jia et al., 2016)

have some limitations. First, the models can only be trained using data com-

ing from either simulations or historical records. Second, they are only able

to predict the storm surge at the same locations of the data used to calibrate

the model. Section 2.4 focuses explicitly on this particular piece of the hur-

ricane risk analysis framework and presents a novel probabilistic model for

storm-surge prediction that is computationally efficient and overcomes such

limitations (Contento et al., 2018).
2.3.3 Damage and Loss Models (Step 3)
The hazard scenarios obtained with the models described in Step 2 can be

used to obtain predictions of annual damage and loss distributions. In gen-

eral, the damage estimations are obtained using fragility curves that provide

the likely damage states of the structures or infrastructure given the values

of the intensity measures describing the wind, rainfall, and storm surge.
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Similarly, the loss estimations are obtained using loss-ratio curves. Such cur-

ves estimate the losses in the form of a percentage of the initial values of the

structures and infrastructure as a function of the intensity measures. These

estimations can be obtained for each hurricane scenario. The resulting dam-

age and losses can then be used to derive the corresponding distributions. An

example of such procedure can be found in Contento et al. (2017).

The common practice has been to conduct damage and loss assessments

(Scawthorn et al., 2006) separately for wind and storm surge with different

models and tools (e.g., HAZUS see FEMA, 2009a,b, and CLARA see

Johnson et al., 2013). However, this might lead to double counting the

damage and losses (since a structure damaged by wind might be also counted

as damaged by storm surge). There are only a few recent studies that estimate

the damage and losses for the combined effects of wind and storm surge

(one example of such studies is Li et al., 2012). Considering the combined

effects of wind and storm surge avoids double counting damage and losses.

In terms of available software, HAZUS-MH (FEMA, 2012) provides the

possibility of performing joint wind-surge damage and loss analyses. To take

advantage of the storm-surge probabilistic model developed by Contento

et al. (2018) in computing the contribution from the storm surge to the dam-

age and loss estimates, user defined hazard scenarios from Contento et al.

(2018) can be used instead of the ones automatically generated by HAZUS

using SLOSH and SWAN (Booij et al., 1996).

2.3.4 Development of Mitigation and Adaptation Strategies
(Step 4)

The hazard scenarios obtained from Step 2 and the distributions of damage

and losses obtained from Step 3 can be used for the development and com-

parison of mitigation and adaptation strategies (Stewart et al., 2014, see also

Chapter 1). Specifically, mitigation strategies would affect the inputs to Step

1, and environmental adaptation strategies would affect the inputs to Steps 2

and 3. The results from Step 3 can be used in decision models for life-cycle

risk assessment of structures (e.g., Lee and Ellingwood, 2017; Gardoni et al.,

2016). Such decision models guide long-term decisions by incorporating the

costs associated to the entire service life of an asset. Incorporating the results

from Step 3 in the decision models allows us to consider the effects of mit-

igation and adaptation strategies in the cost estimates. Finally, the results

from Step 3 can inform insurance and financial models, for example, to

improve the loss- and uncertainty-dependent components of the insurance

premium and catastrophe (CAT) bond pricing (Hofer et al., 2018).
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2.4 Hazard Scenario Models: Storm-Surge Modelling

While there are a number of studies on wind field and debris
movement during hurricanes and their associated damage, there are only

a few studies on storm surge and its associated damage. State-of-the-art

storm-surge models can use outputs from wind and pressure field models

to generate storm-surge simulations, or observed wind and pressure fields

for hindcasts of storm surge (e.g., Houston et al., 1999; Westerink et al.,

2008; Bunya et al., 2010). Physics-based models use shallow-water equa-

tions (SWEs) to model the hydrodynamics of the storm surge (e.g.,

Jelesnianski et al., 1992, Westerink et al., 1994, Hubbert and McInnes,

1999, Roland et al., 2009). The most commonly adopted models for storm

surge are the ADCIRC model (Westerink et al., 1994) and the SLOSH

model (Jelesnianski et al., 1992). The ADCIRC model accurately simulates

hurricane storm surge, but also astronomical tides. The model numerically

integrates the depth-integrated barotropic SWEs in spherical coordinates

over an unstructured grid. The grid has a wide range of element sizes

(Westerink et al., 2008) that are chosen to obtain an extremely fine resolu-

tion near the coast that becomes coarser and coarser moving towards the

deeper ocean, according to the required accuracy. The high-resolution

numerical grid used by ADCIRC captures the complex spatial variability

of the phenomenon (Dietrich et al., 2011); however, the model is highly

computationally demanding. SLOSHwas originally developed for real-time

forecasting of hurricane storm surges on continental shelves. It solves the

SWEs using the finite difference method over a grid (polar, elliptic or hyper-

bolic) centred on the region of interest (Jarvinen and Lawrence, 1985). The

model requires the characteristics of the hurricane to derive a model of the

wind field, which drives the storm surge. The main limit of SLOSH is that

the accuracy of the storm-surge predictions is highly dependent on the accu-

racy of the meteorological input and the error in the estimate is about 20%

using accurate hurricane predictions (Jelesnianski et al., 1992). Moreover,

the model does not account for astronomical tides and wind waves. Lin

et al. (2012) used ADCIRC and SLOSH together with grids having different

extensions and resolutions, restricting the use of ADCIRC to the area for

which the risk assessment requires higher accuracy in the predictions.

Although some of the models available in the literature are accurate, a

trade-off between efficiency and accuracy is required when a high number
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of simulated scenarios are needed like in the case of probabilistic analysis. In

this case, simplifiedmodels fitted to available data are a more efficient option.

They are developed to approximate the dominant features of a complex

model in a computationally efficient way (Asher et al., 2015). Approximate

or empirical models can be divided into three main categories (Asher et al.,

2015): (i) projection-based methods that project on a reduced subspace the

governing equation of the original model; (ii) multifidelity-based methods

that either reduce the resolution of the original model or simplify the under-

lying equations; and (iii) data-driven methods that approximate the original

model output with a relation calibrated with inputs and outputs of the same

original model. For storm surge, only empirical models (i.e., models that

belong to the third category) can be found in the literature. They are

calibrated using inputs and outputs obtained by a limited number of

physics-based simulations of storm-surge scenarios. As outputs, they provide

estimates of the storm surge at predefined locations (points) in the domain of

the model, which are the locations of the observations used for the model

calibration (Irish et al., 2008; Jia and Taflanidis, 2013; Kim et al., 2015;

Jia et al., 2016). While computationally efficient, such empirical models

generally lack physical meaning in their functional form.

Irish et al. (2008) developed an empirical model for storm-surge height as

a function of the central pressure, radius of maximum wind speed, and for-

ward velocity of the hurricane. The model was calibrated using ADCIRC

simulations. Such simulations used synthetic hurricanes to drive the storm

surge. The sustained near-surface winds used in the simulations were esti-

mated using a coupled hurricane vortex-planetary boundary layer model

(Thompson and Cardone, 1996). This empirical model presented a simpli-

fied formulation whose aim was to show the dependence of the storm surge

on the size of the hurricane but not to obtain accurate estimates of storm

surge. Jia et al. (2016) developed a Kriging model to predict storm surge over

an extended coastal region. To improve the computational efficiency of the

Kriging model, they integrated the principal component analysis (Jolliffe,

2002) in their formulation. The results presented in Jia et al. (2016) showed

that their empirical model is capable of providing accurate predictions of

both storm surge and wave height. However, the model was subject to a

computationally demanding calibration that required 400 combined

ADCIRC and SWAN simulations (Dietrich et al., 2011). Also, artificial

neural networks (ANNs) have been used for storm-surge prediction. Kim

et al. (2015) developed a time-dependent empirical model for storm surge
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using an ANN trained with high-fidelity simulations of two historical

hurricanes. While ANNs are a good option for problems that are highly

nonlinear or have a large amount of data, they are usually best suited for

deterministic applications and may not significantly reduce the computa-

tional expenses. In general, common limitations of the empirical models

on storm surge available in the literature are that: (i) they cannot include

in the calibration data recorded or computed at different locations between

storms (as a result, it is typically difficult to include both historical data and

data from simulations because historical data are typically sparser than sim-

ulation data); and (ii) they can provide estimates of storm surge only in the

points used for model calibration (as a result, a separate interpolation among

the predictions is needed to estimate the storm-surge height over the region

of interest).

The probabilistic model presented in Contento et al. (2018), and dis-

cussed in the next sections, can be a valid alternative for probabilistic analyses

of storm surge. In addition, the model in Contento et al. (2018) is also able to

capture the effects of climate change. The model combines a logistic regres-

sion model and a nonstationary random field. The logistic regression model

estimates the probability of one location being wet (i.e., flooded), as a func-

tion of physical regressors affecting the storm surge. The random field esti-

mates the distribution of the surge height over the wet locations. The

random field is developed using the improved latent space approach

(ILSA) proposed in Xu and Gardoni (2018). Specifically, the ILSA-based

random field considers physical regressors as latent dimensions in addition

to the spatial dimensions, and models the mean, variance, and spatial corre-

lation of the storm surge as functions of such regressors. Therefore, such a

model is particularly suited to model the nonstationarity in the storm-surge

distribution on the basis of physical principles.

Differently from the empirical models available in the literature, the

probabilistic model presented in Contento et al. (2018) can be trained using

both results from historical records and high-fidelity simulations, and can

provide predictions at locations different from those of the observations used

for the model calibration. In addition, the model calibration is computation-

ally efficient because it requires a limited amount of data for calibration to

provide accurate predictions. The consequent advantage is that comparative

analyses on the effects of climate change for different climate change scenar-

ios can be performed training the model with results from a limited amount

of simulations for each scenario.
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2.4.1 Physics of the Storm Surge and Storm-Surge Data
The intense circular motion of the wind around the eye of a hurricane that

occurs on the surface of the ocean generates a vertical circular motion in the

oceanic waters (Resio and Westerink, 2008). As the storm approaches the

coast, and the depth of the ocean decreases, the bottom of the ocean disturbs

the vertical motion generating a storm surge, an anomalous rise of water

above the expected astronomical tide. In the low-lying coastal areas, where

the motion of the water is not prevented by natural or artificial barriers the

water penetrates inland. Two different groups of factors, the geomorpholog-

ical features of the landing site and the characteristics of the hurricane, influ-

ence the storm-surge intensity. For a given location, among the

characteristics of the landing site, the one that is mentioned in the literature

as having the highest impact on the storm-surge height is the mean altitude

of the area affected by the storm surge. The hurricane characteristics that

affect the storm surge are those related to the intensity of the hurricane

(i.e., the wind speed, the central pressure, and the hurricane forward speed),

to its track (i.e., the landfall location and the angle of approach to the coast),

as well as the size of the storm.

To develop a probabilistic model for storm-surge predictions, it is fun-

damental to take into account the characteristics mentioned above. In the

proposedmodel, this is done by introducing explanatory functions described

in Section 2.4.2. To define the explanatory functions, the vector of storm-

surge heights, y, at different locations in the region of interest has to be pro-

vided along with the vector of corresponding characteristics of the locations,

x, and the vector of hurricane characteristics, s. The location characteristics

considered in the model are the longitude, x1ji, latitude, x2ji, and altitude, x3ji,

of each measurement location ji¼ (1,…,mi), for each hurricane i¼ (1,…,n).

The hurricane characteristics considered are the longitude and latitude of the

hurricane landing point, s1i and s2i; the heading angle of the hurricane at

landing, s3i; the central pressure (pressure in the eye of the hurricane), s4i;

the forward velocity, s5i; and the radius of maximum wind speed, s6i.

Fig. 2.1 shows some of the characteristics included in s and x. Table 2.1

shows schematically what data are needed for the model calibration and

how they are organised. In the table, the subscript o stands for ‘observation’

to clarify that the quantities are data needed to calibrate the model.

The storm-surge data used to show the capabilities of the model

discussed in this chapter come from simulations performed by Kendra

et al. (2017). The simulations are performed coupling hurricane wind/



Fig. 2.1 Graphic representation of location and hurricane characteristics.

Table 2.1 Format of the Storm-Surge Observations

Hurricane
event

Storm-surge
observations yo

Location
characteristics xo Hurricane characteristics so

xo1 xo2 xo3 so1 so2 so3 so4 so5 so6

1 yo11 xo111 xo211 xo311 so11 so21 so31 so41 so51 so61
yo1j xo1j1 xo2j1 xo3j1
yo1m1

xo1m1
xo2m1

xo3m1

i yoi1 xo11i xo21i xo31i so1i so2i so3i so4i so5i so6i
yoij xo1ji xo2ji xo3ji
yoimi

xo1mi
xo2mi

xo3mi

n yon1 xo11n xo21i xo31n so1n so2n so3n so4n so5n so6n
yonj xo1jn xo2jn xo3jn
yonmn

xo1mn
xo2mn

xo3mn
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precipitation, hydrologic, hydrodynamic, and wave models. For every hur-

ricane scenario used as input, a simulation provides the corresponding

storm-surge scenario. The dependence of the storm-surge scenarios on

the effects of climate change is captured by considering the effects of climate

change on the hurricane scenarios. For each hurricane both track and char-

acteristics are derived under the worst-case climate scenario presented in the

IPCC AR5 report (IPCC, 2013). Such scenario is the 8.5 Representative

Concentration Pathway (RCP 8.5), which assumes a radiative forcing level

of 8.5W/m2 in 2100.

Kendra et al. (2017) generated 238 storm-surge scenarios that include

1200 data over the stretch of the Tar and Pamlico River between the cities

of Greenville and Washington in North Carolina. To show that the chosen

approach does not require a high number of observations to produce accu-

rate results, from the available 238 sets of observations, we randomly select
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25 sets of observations for the model selection and calibration, where a set

refers to a specific hurricane and associated storm-surge scenario.

Although the data refer to a specific time and region (in 2100 and the

Pamlico River area), the probabilistic model presented by Contento et al.

(2018) could be used to estimate the quantities of interest also for different

times and regions as long as the values of x and s are within the range of the

values used to calibrate the models. Since x and s might miss some location

characteristics and/or hurricane characteristics, the model could also be

retrained or updated by Bayesian updating with new data for a specific time

and region when available. For example, the model could be updated with

the results of new simulations based on new hurricane scenarios (possibly

reflecting better predictions on the effects of climate change).

For the model calibration and validation, three groups of observations are

created. The first group (Group A) is used for the model selection and

calibration. Group B is used for the model validation considering hurricane

characteristics used in the model calibration but considering different loca-

tions. Group C is used for the model validation considering locations used in

the model calibration but considering different hurricane characteristics.

Specifically, Group A contains observations at 60 locations that are the

same for each of the 25 scenarios, for a total of 1500 observations. Among

these observations, 70% are used for model selection and calibration. The

model selection and calibration is repeated resampling the 70% of the

observations to check consistency in the results (i.e., that the results do

not depend on the selected data). Group B contains observations at

20 new locations that are again the same for each of the 25 scenarios,

for a total of 500 observations. Group C contains observations at the same

60 locations considered for the observation of Group A, but coming from

four additional scenarios. To avoid extrapolation in the prediction of the

storm-surge height, these four scenarios are selected so that the character-

istics of the hurricanes falls within the ranges of the characteristics of the

hurricanes used for model calibration. Fig. 2.2 shows the locations of

the observations in Groups A, B, and C.
2.4.2 Probabilistic Model for Storm Surge
The probabilistic model presented by Contento et al. (2018) combines two

different models: a logistic regression model and a nonstationary random

field. The logistic regression model predicts if the single location is wet

or dry. While, the random field based on the ILSA approach predicts the



Fig. 2.2 Area of the locations of the storm-surge observations.
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storm-surge height, yij, for the wet locations (yij>0). Contrary to other

models in the literature, the ILSA-based random field model allows for

the combined use of observations coming from historical records and

high-fidelity model simulations even if they are at different locations. Both

the logistic regression model and the ILSA-based random field use explan-

atory functions to capture the underlying physics of the phenomena.

The explanatory functions are selected from an initial set of candidates.

Such explanatory functions are combinations of the location and hurricane

characteristics x and s. The candidate explanatory functions are either taken

from the literature (Irish et al., 2008; Jia and Taflanidis, 2013) or considered

because of their physical meaning. Table 2.2 presents the complete list of

the candidate explanatory functions hqij
0. Each functions is then standardised

to be dimensionless as follows hqij¼ [hqij
0 �E(hqij

0
)]/Var(hqij

0
) where E(hqij

0
) is

the sample mean of hqij
0
and Var(hqij

0
) is the sample variance of hqij

0
obtained

considering all i and j. Fig. 2.3 shows the physical meaning of the hqij
0
with

geographic meaning (i.e., directions, locations, and distances).

Since locations with altitude x3ji�0 (i.e., locations below the sea level)

are more likely to be wet, both the logistic regression and the random field

model are calibrated and validated separately for locations with x3ji>0 and



Table 2.2 Explanatory Functions That Capture the Geomorphological Features of the
Landing Site and the Characteristics of the Hurricane
Function Description

h0ij
0 ¼1 Intercept

h1ij
0 ¼ g(x1ji, s1i, s2i) Longitudinal distance between observation location and

landing point

h2ij
0 ¼ g(x2ji, s1i, s2i) Latitudinal distance between observation location and

landing point

h3ij
0 ¼x3ji Altitude of the observation location

h4ij
0 ¼ g(x1ji,x2ji, s1i, s2i) Distance between observation location and landing point

h5ij
0 ¼ s1i Longitude of the landing point

h6ij
0 ¼ s2i Latitude of the landing point

h7ij
0 ¼ s3i Heading angle of the hurricane at landing

h8ij
0 ¼ s4i Central pressure

h9ij
0 ¼ s5i Forward velocity

h10ij
0 ¼ s6i Radius of maximum wind speed

h11ij
0 ¼cos[g(x1ji,x2ji,

s1i, s2i)]

Cosine of the angular distance between the direction of the

heading angle and the direction connecting the

observation point to the landing point (cosine of the

angle h
0
11ij
∗ in Fig. 2.3)

h12ij
0 ¼ s4i

2 Second power of the central pressure

h13ij
0 ¼ s4i � s6i Cross product of central pressure and radius of maximum

wind speed

h14ij
0 ¼ s4i/s6i Ratio of central pressure and radius of maximum wind

speed

Fig. 2.3 Graphic representation of selected explanatory functions.
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x3ji�0. In order to do so, the observations in Groups A–C are divided into

two groups. Group 1 contains the observations with x3ji>0, and Group 2

contains the observations with x3ji�0. The model selection is done without

considering this distinction.
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2.4.2.1 Logistic Regression Model
First, the logistic regression model is used to estimate the probability pij that a

given location j is wet for a certain hurricane i. The model is written as:

pij xji , si, θl
� �¼ exp θTl �h∗

ij xji , si
� �h i

1+ exp θTl � h∗ij xji , si
� �h i (2.1)

where θl is the vector of model parameters, and hij
∗(xji, si) is the vector of the

powers of the hqij, from the first to the fourth order. Starting from the full

vector, Contento et al. (2018) use a selection process to remove the explan-

atory functions that are statistically insignificant. The selection process has

two steps. The first step uses the Akaike information criterion (AIC)

(Akaike, 1974) for a preliminary selection. The second step uses a cross-

validation technique to make the final selection. In this second step,

the selection process randomly divides the observations used for model

selection (Group A) into a calibration set (80% of the observations) and a

selection set (20% of the observations). Then, it calibrates all of the compet-

ing models using the calibration set, and generates several test sets through

resampling of the selection set. The cross-validation technique selects a

reduced number of candidates by comparing the models’ prediction errors

(the total number of wrong predictions for the test sets). Specifically, for each

candidate model, the selection process computes the mean value and the

95% confidence interval of the model error. Then, the process chooses as

final candidates the models whose 95% confidence interval includes the low-

est mean value. Among these candidate models, the selection process finally

selects the model that has the least number of explanatory functions. The

selected model is then recalibrated using all the data in Group A. Fig. 2.4

shows the selection process for the 11 candidate models with the lowest

AIC. For each of the 11 models showed in the example, the dot represents

the mean value of the model error while the bar shows the 95% confidence

interval. Among the models with a low prediction error, only Models 5–8
have a 95% confidence interval that contains the lowest mean prediction

error that is the one of Model 5. Since Model 5 has fewer explanatory func-

tions than any of theModels 5–8, the final model isModel 5. For the selected

model, the model parameters, θl, are estimated using a Bayesian approach

(Gardoni et al., 2002). The form of Model 5 along with the statistics of

the model parameters can be found in Contento et al. (2018). Once the

posterior distribution of the model parameters, f 00(θl), is found, a predictive



Fig. 2.4 Mean values (dots) and 95% confidence intervals (bars) of the prediction error
for the different models.

Fig. 2.5 Predicted probabilities of dry and wet observations.
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estimate, p
�
ij xji , si
� �

, of the probability of the location j being wet is obtained

following Gardoni et al. (2002).

Fig. 2.5 shows the comparison between observations and predictions for

the data used in the model calibration (80% of Group A) divided into Groups

1 and 2 as described earlier. In each of the two graphs, the dots represent the

mean probabilities for wet and dry locations to be predicted as wet or dry.

The bars are the one standard deviation confidence intervals. Since all the

observation in Group 2 are wet, the model predicts that these locations

are wet with probability close to 1 and confidence intervals close to 0

(the small difference from 1 and 0 is due to the numerical approximations

in finding θl).
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2.4.2.2 Random Field Model
A nonstationary spatial random field is used to estimate the storm-surge

height for the wet locations. The general formulation of a nonstationary

spatial random field can be found in, for example, Schmidt et al. (2011).

Generally, a random field is composed by three terms: a mean structure

of the field; a zero-mean nonstationary random field; and a white noise.

The mean structure describes the mean value of the quantity of interest as

it varies spatially. The zero-mean nonstationary random field captures the

nonstationary covariance. The white noise captures the micro-scale

uncertainty. The mean structure is typically a deterministic function ideally

constructed based on the underlying physics of the phenomenon. The

covariance generally is constructed using a parametric function. Finally,

the white noise is typically modelled with an additive zero mean normal

random variables with unknown standard deviation.

The random field used in Contento et al. (2018) is based on the ILSA

proposed by Xu and Gardoni (2018). The random field is modelled as a

function of explanatory functions, hij(xji, si), which are considered as latent

dimensions of the random field. For purpose of normalisation, the random

field model is developed for the natural logarithm of the storm-surge heights,

z¼ ln(y). The random field is written as:

zij xji , si, θIL
� �¼m xji , si, θm

� �
+ v xji , si, θΣ, θσ

� �
+ σε xji

� �
(2.2)

where the mean field, m(xji,si,θm), the zero mean correlated field,

v(xji,si,θΣ,θσ), and the white noise σε(xji) contain model parameters,

θIL¼ (θm,θΣ,θσ,σ), that are calibrated using the data described in

Section 2.4.1. The mean field is a linear combination of the explanatory

functions:

m xji , si, θm
� �¼X

k
θmkhk xji , si

� �
(2.3)

The variances and spatial correlations in the zero-mean nonstationary

random field are modelled as functions of the Euclidian distance, the differ-

ences between explanatory functions at two locations, and unknown model

parameters. The elements of the covariance matrix given by v(xji, si,θΣ,θσ)
and the white noise can be written as:

Σzz x, s, θΣ, θσ, σð Þ½ �rs¼ Σvv x, s, θΣ, θσð Þ½ �rs + σ2 � 1 r¼sf g

¼ σ2v x, s, θσð Þ � exp �Qrs x, s, θΣð Þ½ �+ σ2 � 1 r¼sf g
(2.4)
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where σv(x, s,θσ) is the standard deviation,Qrs(x, s,θΣ) is the generalized dis-
tance in the correlation function, and σ2 is the variance of the white noise,
x¼ [xji] 8 i, j, and s¼ [si] 8 i. Details for deriving σv(x, s,θσ) and Qrs(x, s,θΣ)
can be found in Xu and Gardoni (2018).

For the ILSA-based random field, the model selection starts from the full

vector of the explanatory functions, hij(xji, si). To avoid underestimating the

storm-surge height, Contento et al. (2018) used only the wet observations in

Group A for the model selection of the random field. The model calibration

and selection is done as for the logistic regression.

In this case, all the 15 explanatory functions shown in Table 2.2 are

retained in the selected model. After the parameter estimation, a predictive

joint distribution of the natural logarithms of the storm-surge heights ez x, sð Þ
is derived using the posterior distribution of θIL, f 00(θIL). The median pre-

dictions of the storm-surge heights ey x, sð Þ and their confidence intervals are
consequently derived from ez x, sð Þ. The form of the selected model, along

with the statistics of the model parameters, and an exhaustive explanation on

the derivation of ey x, sð Þ can be found in Contento et al. (2018).

Fig. 2.6 show the results of the fitting obtained for the observations in

Groups 1 and 2. The dots in Fig. 2.6 are the predicted heights versus the

actual observed heights, while the diagonal lines are the 1:1 lines that rep-

resent perfect predictions. The predictions for both Groups 1 and 2 are

unbiased.

2.4.3 Water Depth Predictions
For each set of location and hurricane characteristics, the model

provides predictions in terms of the probability of having a wet loca-

tion, p
�
ij xji , si
� �

, and the marginal distribution of the storm-surge height
Fig. 2.6 Fitting of the training data for the random field model yij.
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y
�
ij xji , si
� �

. Since the distribution of the storm-surge height refers to the

mean sea level, alone it is not an exhaustive piece of information and, at

the same time, does not convey an intuitive representation of the flooding

risk. To solve this issue, an option is to provide results in terms of water

depth, kij xji , si
� �

, at the site. The prediction for the water depth can be

obtained by subtracting the altitude of the prediction location x3ji from

the prediction of the storm-surge height as:

ekij xji , si� �¼eyij xji , si� ��x3ji (2.5)

Consequently, with this transformation, a prediction is completely defined

by the two values epij xji , si� �
, ekij xji , si� �h i

.

We can now look at the accuracy of the calibrated models in predicting

the likelihood that a location is wet and the corresponding water depth (if a

location is wet) for different locations than then ones used in the models cal-

ibration (but for the same hurricanes), and for different hurricanes. The first

set of predictions is made considering the observations in Group

B (described in Section 2.4.1). In this case, the predictions are made for hur-

ricane characteristics taken from the initial set of 25 hurricanes chosen for the

model calibration, but for locations different from those used to develop the

model. The second set of predictions is made considering the observations in

Group C. In this second case, the hurricane characteristics are different from

those in the data used for the model calibration.
2.4.3.1 Predictions at Different Locations
Fig. 2.7 shows the results for different locations (but the same hurricanes).

The dots show the median predictions versus the observations, while the

bars are the corresponding one standard deviation confidence intervals.

The diagonal lines represent the perfect correspondence between the pre-

dictions and observations. For each prediction, the lower is the probability

that the location is wet, the dimmer is the colour of the dot and

corresponding bar. In this way, it is possible to combine the information

from the logistic regression model and the random field.

Fig. 2.7 shows the predictions corresponding to the data in Groups 1 and

2. In general, the values of the observations and predictions for the locations

in Group 2 are higher than those in Group 1. The reason is that these loca-

tions are those on the riverbed, and the initial water height is summed to the

storm surge when considering the water depth (the altitude is negative).



Fig. 2.7 Predictions of water depth kij due to hurricanes used to calibrate the model
(different locations).
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In Fig. 2.7, the darker colour of the markers show that generally for

Group 1 the model predicts higher values of the water depth with higher

confidence. This tendency of the model means that the locations with

higher values of water depth, for which the risk of damage is higher, are

more likely correctly identified. Fig. 2.7 also shows that the locations of

the observations in Group 2 are all correctly predicted as wet (consistently

with the results shown in Fig. 2.5). The mean values of the ILSA-based ran-

dom field predictions are generally more accurate (closer to the 1:1 line) than

those for the locations in Group 1.
2.4.3.2 Predictions for Different Hurricanes
The predictions for hurricane scenarios not used in the model calibration are

made using the four hurricanes with characteristics shown in Table 2.3.

Figs. 2.8 and 2.9 show the predictions of the water depth obtained for the

four additional hurricane scenarios. The meaning of markers, bars, and

colours is the same explained in Fig. 2.7.

Generally, we can make similar observations as those made for Fig. 2.7.

The highest values of water depth are predicted with good accuracy and, at

the same time, the related locations have a high probability of being wet.

The accuracy in the prediction increases for the observations belonging

to Group 2. The predictions presented in Section 2.4.3 do not aim to exem-

plify an exhaustive study on the effects of climate change on storm surge but

they show that the probabilistic model presented in Contento et al. (2018) is

a suitable tool that can be used for probabilistic analyses on storm surge

considering or not the effects of climate change.



Table 2.3 Hurricane Characteristics

Hurricane

Hurricane characteristics

s1 (°lon) s2 (°lat) s3 (rad) s4 (hpa) s5 (m/s) s6 (km)

1 �76.162 34.856 5.16 989.81 5.02 52.80

2 �75.518 35.112 5.75 986.83 3.13 47.77

3 �75.736 35.142 5.22 988.57 5.22 38.85

4 �75.695 35.156 5.16 994.82 5.94 36.29

Fig. 2.8 Predictions of water depth kij for different hurricanes characteristics (Hurricane
1 and 2).
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2.5 Development of Mitigation and Adaptation
Strategies
This section describes in more detail the use of the results from the

storm-surge model (described in Section 2.4 and part of Step 2 of the general

framework for hurricane risk analysis) and of the results from the loss esti-

mates from Step 3 of the framework.



Fig. 2.9 Predictions of water depth kij for different hurricanes characteristics (Hurricane
3 and 4).
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2.5.1 Use of Storm-Surge Predictions
Storm-surge predictions can be used in the form of hazard maps that provide

information (e.g., the base flood elevation) for the choice of mitigation and

adaptation strategies. At the level of the built or modified natural environ-

ment, hazard maps can be used to guide in the development of adaptation

strategies. Such strategies could be both interventions on structural elements

(e.g., elevating buildings on piles, installing breakaway walls, improving pile

foundations, installing opening in foundation walls) and on nonstructural

elements (e.g., elevating equipment, constructing flood-resistant equipment

enclosures) (FEMA, 2005). The development of accurate hazard maps that

account for the effects of climate change play an important role in defining

the specific design characteristics of such adaptation strategies (i.e., the

height of the elevated floors, and the characteristics of breakaway walls).

At the community level, hazard maps can inform on the effectiveness of

mitigation strategies in terms of their ability to reduce the effects of climate

change on the characteristics of the hazard. Hazard maps can also be used as a
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planning tool for environmental and human adaptation strategies. For the

environmental adaptation strategies, hazard maps may help identify the most

effective locations and characteristics of structures such as seawalls, levees

and storm-surge barriers (FEMA, 2005), or green infrastructure such as wet-

land. For the human adaptation strategies, hazard maps may help establish

evacuation routes, define high-risk areas where development should be

avoided by enforcing specific zoning policies, and define the most suitable

areas for relocation that could be a successful way to adapt to both sea-level

rise and storm surge (Olshansky, 2018).
2.5.2 Use of Damage and Loss Estimations
Damage and loss distributions obtained from the third step of the framework

can be used for the comparison of mitigation and adaptation strategies

through the evaluation of their cost-effectiveness (Bjarnadottir et al., 2011),

in decision models for life-cycle risk assessment of structures and

infrastructure (Lee and Ellingwood, 2017; Gardoni et al., 2016), and in finan-

cial models used to device strategies to edge the risks (Grace et al., 2005;

Jaffee et al., 2010; Hofer et al., 2018). In this section, we focus specifically

on the use of the damage and loss estimations in financial models and specif-

ically on insurance premium and CAT bond pricing. Insurance premium

and CAT bond pricing, although different, are both directly affected by

the risk associated to the policy (Grace et al., 2005) and the uncertainties in

their estimation (Hofer et al., 2018). Modern pricing techniques can be used

to devise effective risk hedging opportunities. To be effective, such techniques

need accurate loss estimations that account for the underlying uncertainties.

The pricing of insurance premiums depends on several factors such as the

required deductible, the desired coverage amount, and the risk associated to

the policy. The deductible and the coverage amount are set a priori. On the

other hand, the risk associated to the policy is more difficult to define

because it depends on several aspects such as the kind of hazard and the char-

acteristics of the insured property (e.g., type and location). Different insur-

ance companies adopt different formulations for pricing the premiums.

Using a generic formulation, Contento et al. (2017) compared the expected

hurricane insurance premiums considering the present climate conditions as

well as the RCP 8.5 climate change scenario. The results suggested an

increase in the premium due to the effects of climate change that ranges from

5% to 20% depending from the type of building to be insured. There are

several strategies to avoid excessive increases in premium. The most
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common strategies consist in acting directly on the premium by adding or

increasing the deductible, transferring part of the insurance exposure to rein-

surance companies, or transferring part of the insurance risks to the capital

market using insurance-linked securities like CAT bonds (Ou Yang, 2010;

Hofer et al., 2018).

CAT bonds are risk-linked securities that transfer a specified set of risks

from a sponsor to investors. CAT bonds are structured as coupon-paying

bonds with default linked to the occurrence of a trigger event. There are

different types of trigger events for hurricane CAT bonds. Some of them

are related to the occurrence and characteristics of the individual event

(i.e., the occurrence of a hurricane with intensity higher than a predefined

threshold), others are related to the consequences of the event (i.e., the

exceedance of a set amount of losses for a single insurance or in a specific

area of interest). In both cases the trigger event may be affected by the effects

of climate change. For the first type of trigger events, the effects would be

captured by the results of Steps 1 and 2. For the second type, the effects

would be captured by the results of Step 3.
2.6 Summary

The terms ‘mitigation’ and ‘adaptation’ strategies are typically used
with different meanings in the contexts of natural hazards and climate

change. The chapter started by providing clear definitions of ‘mitigation’

and ‘adaptation’ strategies, and proposing a consistent use of these terms with

dealing with natural hazards affected by climate change.

Then, the chapter presented a general framework for hurricane risk anal-

ysis. The framework has four steps: the modelling of the hurricane activity,

the modelling of the hazard scenarios, the modelling of damage and losses,

and the development of mitigation and adaptation strategies. This chapter

presented a probabilistic model for storm-surge predictions that can be used

in the second step of the framework. The chapter also showed the possible

use of the information obtained by a risk analysis in the development of mit-

igation and adaptation strategies.

The probabilistic model for storm-surge predictions combines a logistic

regression model and random field. The logistic regression model estimates

the probability that a location is wet. The random field estimates the

corresponding distribution of water depth. The main advantages of this

model compared to those available in the literature are its computational



66 Alessandro Contento et al.
efficiency, the possibility to be calibrated with data coming from both high-

fidelity simulations and historical records, and its ability to provide predic-

tions at locations different from those for which the model was calibrated.

The chapter showed examples of predictions that have been obtained cali-

brating the model with data from high-fidelity model simulations. Such sim-

ulations were performed assuming the effects of the climate change scenario

described by the RCP 8.5.

The last part of the chapter showed the possible uses of hazard maps

(obtained in the second step of the framework), and of damage and loss esti-

mations (obtained in the third step). Hazard maps are an important instru-

ment for the choice and design of mitigation and adaptation strategies both at

the level of the built or modified natural environment and at the community

level. Damage and loss estimates can be used for the comparison of mitiga-

tion and adaptation strategies, in decision models for life-cycle risk assess-

ment of structures and infrastructure, and in financial models. Specifically

considering financial models, the chapter showed how the results of the risk

analysis can inform the insurance premiums and the pricing of CAT bonds.
2.7 Potential Design and Practice Evolutions

The use of risk analyses could help the design process both at the level
of the built or modified environment and the community. At the level of the

built or modified environment level, it could help define specific design

characteristics. For example, hazard maps providing the base flood elevation

derived based on a selected climate change scenario could be adopted in the

common practice. At the community level, risk analyses could help in land

planning processes. However, current state-of-the-art tools (i.e., software)

for hurricane risk analyses are largely research tools rather than design tools.

The development of new design-oriented tools could help the evolution of

the engineering practice.
2.8 Open Research Questions

This chapter shows a framework for hurricane risk analysis, as well as
some of the most advanced theoretical models that can be used as part of such

framework. However, there are several aspects within such framework that

could be improved. One aspect is that the predictions of damages and losses
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carry a high uncertainty deriving from the choice of the climate change sce-

nario. A higher control of greenhouse gasses emissions on one side and the

improvement of climatological models on the other could reduce the uncer-

tainty in the choice of the scenario to adopt and in the projections for a given

scenario. The reduction of the uncertainty in the hazard description would

consequently be reflected in the uncertainty in the damage and loss estima-

tions. Another aspect is related to the models available in the literature and

consequently included in the available software. In most of the cases, the

dependence of the models in Steps 1 and 2 on climate change is restricted

to the use of projections of SSTs. The reason is that changes in SSTs are pro-

jected with higher confidence than changes in most of the other climatolog-

ical variables. Adding the dependence of the models on other climatological

variables affected by climate change may help improve the accuracy of the

predictions.
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